145 research outputs found

    A Novel Locus for Leber Congenital Amaurosis (LCA4) with Anterior Keratoconus Mapping to Chromosome 17p13

    Get PDF
    5 páginas, 3 figuras, 2 tablas.-- et al.[Purpose]: A two-generation consanguineous Pakistani family with autosomal recessive Leber congenital amaurosis (LCA, MIM 204,000) and keratoconus was identified. All affected individuals have bilateral keratoconus and congenital pigmentary retinopathy. The goal of this study was to link the disease phenotype in this family. methods. Genomic DNA was amplified across the polymorphic microsatellite poly-CA regions identified by markers. Polymerase chain reaction (PCR) products were separated by nondenaturing polyacrylamide gel electrophoresis. Alleles were assigned to individuals, which allowed calculation of LOD scores using the Cyrillic and MLINK software program. The retinal guanylate cyclase (RETGC-1, GDB symbol GUC2D) and pigment epithelium-derived factor (PEDF) genes were analyzed by heteroduplex analysis and direct sequencing for mutations in diseased individuals. [Results]: Based on a whole genome linkage analysis the first locus for this combined phenotype has been mapped to chromosome 17p13. Linkage analysis gave a two point LOD score of 3.21 for marker D17S829. Surrounding this marker is a region of homozygosity of 15.77 cM, between the markers D17S1866 and D17S960; however, the crossover for the marker D17S1529 refines the region to 10.77 cM within which the disease gene is predicted to lie. Mutation screening of the nearby RETGC-1 gene, which has been shown to be associated with LCA1, revealed no mutations in the affected individuals of this family. Similarly, another prime candidate in the region PEDF was also screened for mutations. The factor has been shown to be involved in the photoreceptor differentiation and neuronal survival. No mutations were found in this gene either. Furthermore, RETGC-1 was physically excluded from the critical disease region based on the existing physical map. [Conclusions]: It is therefore suggested that this combined phenotype maps to a new locus and is due to an as yet uncharacterized gene within the 17p13 chromosomal region.Supported by The Wellcome Trust and Medical Research Council UK.Peer reviewe

    Autosomal dominant retinitis pigmentosa with apparent incomplete penetrance: a clinical, electrophysiological, psychophysical, and molecular genetic study

    Get PDF
    7 páginas, 7 figuras, 4 tablas.-- Licence Creative Commons, attribution, Non-commercial licence.-- et al.Twenty five symptomatic individuals and six asymptomatic obligate gene carriers from four families with autosomal dominant retinitis pigmentosa (adRP) showing apparent incomplete penetrance have been studied. Symptomatic individuals from three families showed early onset of night blindness, non-recordable rod electroretinograms, and marked elevation of both rod and cone thresholds in all subjects tested. In the fourth family, there was more variation in the age of onset of night blindness and some symptomatic individuals showed well preserved rod and cone function in some retinal areas. All asymptomatic individuals tested had evidence of mild abnormalities of rod and cone function, indicating that these families show marked variation in expressivity rather than true non-penetrance of the adRP gene. No mutations of the rhodopsin or RDS genes were found in these families and the precise genetic mutation(s) remain to be identified.This study was supported by the Medical Research Council (UK), The Weilcome Trust, British Retinitis Pigmentosa Society, and the National Retinitis Pigmentosa Society, Fighting Blindness, USA.Peer reviewe

    A Novel Keratocan Mutation Causing Autosomal Recessive Cornea Plana

    Get PDF
    PURPOSE: Mutations in keratocan (KERA), a small leucine-rich proteoglycan, have recently been shown to be responsible for cases of autosomal recessive cornea plana (CNA2). A consanguineous pedigree in which cornea plana cosegregated with microphthalmia was investigated by linkage analysis and direct sequencing. METHODS: Linkage was sought to polymorphic microsatellite markers distributed around the CNA2 and microphthalmia loci (arCMIC, adCMIC, NNO1, and CHX10) using PCR and nondenaturing polyacrylamide gel electrophoresis before KERA was directly sequenced for mutations. RESULTS: Positive lod scores were obtained with markers encompassing the CNA2 locus, the maximum two-point lod scores of 2.18 at recombination fraction theta = 0 was obtained with markers D12S95 and D12S327. Mutation screening of KERA revealed a novel single-nucleotide substitution at codon 215, which results in the substitution of lysine for threonine at the start of a highly conserved leucine-rich repeat motif. Structural modeling predicts that the motifs are stacked into an arched beta-sheet array and that the effect of the mutation is to alter the length and position of one of these motifs. CONCLUSIONS: This report describes a novel mutation in KERA that alters a highly conserved motif and is predicted to affect the tertiary structure of the molecule. Normal corneal function is dependent on the regular spacing of collagen fibrils, and the predicted alteration of the tertiary structure of KERA is the probable mechanism of the cornea plana phenotype

    Close genetic linkage between X linked retinitis pigmentosa and a restriction fragment length polymorphism identified by recombinant DNA probe L1.28

    Get PDF
    Retinitis pigmentosa (RP) is a group of retinal degeneration characterized by progressive visual field loss, night blindness and pigmentary retinopathy. Its prevalence is in the region of 1-2 in 5,000 of the general population, making it one of the commoner causes of blindness in early and middle life. Although 36-48% of RP patients are isolated cases, the remainder show autosomal dominant, autosomal recessive or X-linked modes of inheritance. The X-linked variety ( XLRP ) is found in 14-22% of RP families in the UK. In the present study, X chromosome-specific recombinant DNA probes which can detect restriction fragment length polymorphisms have been used to localize the XLRP gene(s) to a subregion of the X chromosome using linkage analysis. One of the probes, L1.28, has been shown to be closely linked to XLRP in five kindreds, with 95% confidence limits of 0-15 centimorgans (maximum LOD score of 7.89 at a distance of 3 centimorgans). This suggests that the XLRP locus lies on the proximal part of the short arm of the X chromosome. This probe is potentially useful for carrier detection and early diagnosis in about 40% of cases, provided that genetic heterogeneity can be excluded by analysis of further families

    Autosomal Dominant Retinitis Pigmentosa: Absence of the Rhodopsin Proline- Histidine Substitution (codon 23) in Pedigrees from Europe

    Get PDF
    In exon 1 at codon 23 of the rhodopsin gene, a mutation resulting in a proline-to-histidine substitution has previously been observed in approximately 12% of American autosomal dominant retinitis pigmentosa (ADRP) patients. The region around the site of this mutation in the rhodopsin gene has been amplified and analyzed in affected individuals from 91 European ADRP pedigrees. The codon 23 mutation has been found to be absent in all cases, including a large Irish pedigree in which the disease gene has previously been shown to be closely linked to the rhodopsin locus. This indicates the presence of either allelic or nonallelic heterogeneity in ADRP

    Mutation spectrum of EYS in Spanish patients with autosomal recessive retinitis pigmentosa

    Get PDF
    29 páginas, 4 figuras, 3 tablas.-- et al.Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies characterised ultimately by the loss of photoreceptor cells. We have recently identified a new gene (EYS) encoding an ortholog of Drosophila spacemaker (spam) as a commonly mutated gene in autosomal recessive RP. In the present study, we report the identification of 73 sequence variations in EYS, of which 28 are novel. Of these, 42.9% (12/28) are very likely pathogenic, 17.9% (5/28) are possibly pathogenic, whereas 39.3% (11/28) are SNPs. In addition, we have detected 3 pathogenic changes previously reported in other populations. We are also presenting the characterisation of EYS homologues in different species, and a detailed analysis of the EYS domains, with the identification of an interesting novel feature: a putative coiled-coil domain. Majority of the mutations in the arRP patients have been found within the domain structures of EYS. The minimum observed prevalence of distinct EYS mutations in our group of patients is of 15.9% (15/94), confirming a major involvement of EYS in the pathogenesis of arRP in the Spanish population. Along with the detection of three recurrent mutations in Caucasian population, our hypothesis of EYS being the first prevalent gene in arRP has been reinforced in the present study.This study was funded by PN de I+D+I 2008- 2011, Instituto de Salud Carlos III (ISCIII) -Subdirección General de Evaluación y Fomento de la Investigación, Fondo de Investigación Sanitaria (PI081131), Spain; Consejería de Salud (PI-0334/2007), Consejería de Innovación, Ciencia y Empresa (PI08-CTS-03687), Junta de Andalucía, Spain; El Centro de Investigación Biomédica en Red de Enfermedades Raras is an initiative of the Instituto de Salud Carlos III. J.I. P. was supported by Fondo de Investigación Sanitaria and M. G-dP by Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía, Spain. The research of K.W.L. was funded by the Stichting Wetenschappelijk Onderzoek Oogziekenhuis Prof. Dr. H.J. Flieringa, Rotterdam. Contract grant sponsor: Fondo de Investigación Sanitaria, Spain; Consejería de Salud; Consejería de Innovación, Ciencia y Empresa; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER). Contract grant number: PI081131, PI-0334/2007, PI08-CTS-03687Peer reviewe

    Cone-Rod Dystrophy Due to Mutations in a Novel Photoreceptor-Specific Homeobox Gene (CRX) Essential for Maintenance of the Photoreceptor

    Get PDF
    Genes associated with inherited retinal degeneration have been found to encode proteins required for phototransduction, metabolism, or structural support of photoreceptors. Here we show that mutations in a novel photoreceptor-specific homeodomain transcription factor gene (CRX) cause an autosomal dominant form of cone-rod dystrophy (adCRD) at the CORD2 locus on chromosome 19q13. In affected members of a CORD2-linked family, the highly conserved glutamic acid at the first position of the recognition helix is replaced by alanine (E80A). In another CRD family, a 1 bp deletion (E168 [delta1 bp]) within a novel sequence, the WSP motif, predicts truncation of the C-terminal 132 residues of CRX. Mutations in the CRX gene cause adCRD either by haploinsufficiency or by a dominant negative effect and demonstrate that CRX is essential for the maintenance of mammalian photoreceptorsThis work was supported by the RP Foundation of Canada (R. R. M.), the Foundation Fighting Blindness (R. R. M. and S. G. J.), the Canadian Genetic Disease Network (R. R. M. and A. D.), the Medical Research Council of Canada (R. R. M.), The Wellcome Trust (043825/Z/95) and the Human Genome Mapping Resource Centre (C. Y. G.-E. and S. S. B.), the Howard Hughes Medical Institute and NIH R01 EY0 8064 (C. L. C.), the Canadian Genome Analysis and Technology Genome Resource Facility (S. W. S. and L.-C. T.), the NIH/NEI (EY05627) (S. G. J.), and the Greek National Scholarship Foundation (M. P.). R. R. M. and L.-C. T. are International Research Scholars of the Howard Hughes Medical Institute

    Effect of Gene Therapy on Visual Function in Leber's Congenital Amaurosis

    Get PDF
    Early-onset, severe retinal dystrophy caused by mutations in the gene encoding retinal pigment epithelium–specific 65-kD protein (RPE65) is associated with poor vision at birth and complete loss of vision in early adulthood. We administered to three young adult patients subretinal injections of recombinant adeno-associated virus vector 2/2 expressing RPE65 complementary DNA (cDNA) under the control of a human RPE65 promoter. There were no serious adverse events. There was no clinically significant change in visual acuity or in peripheral visual fields on Goldmann perimetry in any of the three patients. We detected no change in retinal responses on electroretinography. One patient had significant improvement in visual function on microperimetry and on dark-adapted perimetry. This patient also showed improvement in a subjective test of visual mobility. These findings provide support for further clinical studies of this experimental approach in other patients with mutant RPE65. (ClinicalTrials.gov number, NCT00643747.)Supported by grants from the U.K. Department of Health, the British Retinitis Pigmentosa Society, and the Special Trustees of Moorfields Eye Hospital, and by the Sir Jules Thorn Charitable Trust, the Wellcome Trust, the European Union (EVI-Genoret and Clinigene programs), the Medical Research Council, Foundation Fighting Blindness, Fight for Sight, the Ulverscroft Foundation, Fighting Blindness (Ireland), Moorfields Eye Hospital, and Institute of Ophthalmology Biomedical Research Centre for Ophthalmology, University College London

    WDR34, a candidate gene for non-syndromic rod-cone dystrophy

    Get PDF
    Rod-cone dystrophy (RCD), also called retinitis pigmentosa, is characterized by rod followed by cone photoreceptor degeneration, leading to gradual visual loss. Mutations in over 65 genes have been associated with non-syndromic RCD explaining 60% to 70% of cases, with novel gene defects possibly accounting for the unsolved cases. Homozygosity mapping and whole-exome sequencing applied to a case of autosomal recessive non-syndromic RCD from a consanguineous union identified a homozygous variant in WDR34. Mutations in WDR34 have been previously associated with severe ciliopathy syndromes possibly associated with a retinal dystrophy. This is the first report of a homozygous mutation in WDR34 associated with non-syndromic RCD.Doctoral funding from the Ministère de l'Enseignement Supérieur et de la Recherche; Europe exchange 2018 Erasmus; European Reintegration Grant, Grant/Award Number: PERG04-GA-2008-231125; Fondation de France-Berthe Fouassier; Foundation Fighting Blindness, Grant/Award Number: Grant # CD-CL-0808-0466-CHNO CIC503 recogn; Foundation Voir et Entendre; French Agence Nationale de la Recherche, Grant/Award Numbers: IHU FOReSIGHT: ANR-18-IAHU-0001, LIFESENSES: ANR-10-LABX-65; National Eye Institute [R01EY012910 (EAP), R01EY026904 (KMB/EAP) and P30EY014104 (MEEI core support)], the Foundation Fightin

    A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies

    Get PDF
    Despite rapid advances in the identification of genes involved in disease, the predictive power of the genotype remains limited, in part owing to poorly understood effects of second-site modifiers. Here we demonstrate that a polymorphic coding variant of RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein-1 like), a ciliary gene mutated in Meckel-Gruber (MKS) and Joubert (JBTS) syndromes, is associated with the development of retinal degeneration in individuals with ciliopathies caused by mutations in other genes. As part of our resequencing efforts of the ciliary proteome, we identified several putative loss-of-function RPGRIP1L mutations, including one common variant, A229T. Multiple genetic lines of evidence showed this allele to be associated with photoreceptor loss in ciliopathies. Moreover, we show that RPGRIP1L interacts biochemically with RPGR, loss of which causes retinal degeneration, and that the Thr229-encoded protein significantly compromises this interaction. Our data represent an example of modification of a discrete phenotype of syndromic disease and highlight the importance of a multifaceted approach for the discovery of modifier alleles of intermediate frequency and effect.This work was supported by grants R01EY007961 from the National Eye Institute (H.K. and A.S.), R01HD04260 from the National Institute of Child Health and Development (N.K.), R01DK072301, R01DK075972 (N.K.), R01DK068306, R01DK064614, R01DK069274 (F.H.), NRSA fellowship F32 DK079541 (E.E.D.) from the National Institute of Diabetes, Digestive and Kidney disorders, Intramural program of NEI (A.S.), the Macular Vision Research Foundation (N.K.), the Foundation for Fighting Blindness (H.K., S.S.B., A.S. and N.K.), the Foundation for Fighting Blindness Canada (R.K.K.), Le Fonds de la recherche en sante du Québec (FRSQ) (R.K.K.), Research to Prevent Blindness (A.S.), Harold Falls Collegiate Professorship (A.S.), the Midwest Eye Banks and Transplantation Center (H.K.), the Searle Scholars Program (M.A.B.), the Deutsche Forschungsgemeinschaft (DFG grant BE 3910/4-1; C.B.) the UK Medical Research Council (grant number G0700073; C.A.J.), NIHR Biomedical Research Centre for Ophthalmology (S.S.B.) and EU-GENORET Grant LSHG-CT-2005-512036 (S.S.B.). F.H. is an investigator of the Howard Hughes Medical Institute (HHMI) and a Doris Duke Distinguished Clinical Scientist (DDCF)
    • …
    corecore